Evaluation of Chitosan-alginate-hyaluronate Complexes Modified by an RGD-containing Protein as Tissue-engineering Scaffolds for Cartilage Regeneration
- Hsu, Shan-hui
- Whu, Shu Wen
- Hsieh, Shu-Chih
- Tsai, Ching-Lin
- Chen, David Chanhen
- Tan, Tai-Sheng
In this study, a series of natural biodegradable materials in the form of chitosan (C)-alginate (A)-hyaluronate (H) complexes are evaluated as tissue-engineering scaffolds. The weight ratio of C/A is 1: 1 or 1: 2. Sodium hyaluronate is mixed in 2%. The complexes can be cast into films or fabricated as scaffolds. Their surface can be further modified by an Arg-Gly-Asp (RGD)-containing protein, a cellulose-binding domain-RGD (R). Cytocompatibility tests of the films are conducted using immortalized rat chondrocyte (IRC) as well as primary articular chondrocytes harvested from rabbits. The neocartilage formation in cell-seeded scaffolds is examined in vitro as well as in rabbits, where the scaffolds are implanted into the defect-containing joints. The results from cytocompatibility tests demonstrate that R enhances cell attachment and proliferation on C-A and C-A-H complex films. Complex C1A1HR (C: A = 1: 1 with H and R) has better performance than the other formulation. Cells retain their spherical morphology on all C-A and C-A-H complexes. The in vitro evaluation of the seeded scaffolds indicates that the C1A1HR complex is the most appropriate for 3-D culture, manifested by the better cell growth as well as higher glycosaminoglycan and collagen contents. When the chondrocyte scaffolds are implanted into rabbit knee cartilage defects, partial repair is observed after 1 month in C1A1HR as well as in C1A1 (C: A = 1: 1 without H and R) scaffolds. The defects are completely repaired in 6 months when C1A1HR constructs are implanted. It is concluded that C1A1HR is a potential tissue-engineering scaffold for cartilage regeneration.