Gene therapy for haemophilia A and B, from basic principles to clinical implementation

An illustrated review

  • Ay, Cihan
  • Frenzel, Laurent
  • Pinachyan, Karen
  • Le Quellec, Sandra
Haemophilia 30(1):p 5-15, January 2024. | DOI: 10.1111/hae.14907

AUTHOR CONTRIBUTIONS

All authors were involved in the preparation and the overall conceptualization of the review. Cihan Ay, Laurent Frenzel, and Sandra Le Quellec were also involved in the creation, visualization, and presentation of the published work. All authors validated and approved the published work.

CONFLICT OF INTEREST STATEMENT

Cihan Ay received personal fees for lectures and participation in advisory boards from Bayer, CSL Behring, Novo Nordisk, Pfizer, Roche, LFB, and SOBI. Laurent Frenzel received consultant fees from SOBI, Roche, and Pfizer. Karen Pinachyan and Sandra Le Quellec are full‐time employees of CSL Behring.

ETHICS APPROVAL STATEMENT

Not applicable.

PATIENT CONSENT STATEMENT

Not applicable.

PERMISSION TO REPRODUCE MATERIAL FROM OTHER SOURCES

Not applicable.

CLINICAL TRIAL REGISTRATION

Not applicable.

ACKNOWLEDGMENTS

The authors thank Dr.ir. Tonke L. de Jong of COR2ED Medical Affairs, Bottmingen, Switzerland for providing scientific and editorial support, and Dr. Yuva Oz of Art 4 Science, Amsterdam, the Netherlands for providing creative support, which was funded by CSL Behring Europe, Hattersheim am Main, Germany, in accordance with Good Publication Practice (GPP3) guidelines (http://www.ismpp.org/gpp3).

REFERENCES

  • 1. Lenting PJ, van Mourik JA, Mertens K. The life cycle of coagulation factor VIII in view of its structure and function. Blood. 1998;92(11):3983–3996.
  • 2. Yoshitake S, Schach BG, Foster DC, Davie EW, Kurachi K. Complete nucleotide sequences of the gene for human factor IX (antihemophilic factor B). Biochemistry. 1985;24(14):3736–3750.
  • 3. Shahani T, Covens K, Lavend'homme R, et al. Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII. J Thromb Haemost. 2014;12(1):36–42.
  • 4. Tatsumi K, Ohashi K, Mukobata S, et al. Hepatocyte is a sole cell type responsible for the production of coagulation factor IX in vivo. Cell Med. 2012;3(1‐3):25–31.
  • 5. Iorio A, Stonebraker JS, Chambost H, et al. Establishing the prevalence and prevalence at birth of hemophilia in males: a meta‐analytic approach using national registries. Ann Intern Med. 2019;171(8):540–546.
  • 6. World Federation of Haemophilia . Report on the annual global survey. Accessed August, 2023. Available at: https://www1.wfh.org/publications/files/pdf‐2324.pdf
  • 7. Srivastava A, Santagostino E, Dougall A, et al. WFH guidelines for the management of hemophilia, 3rd edition. Haemophilia. 2020;26(Suppl 6):1–158.
  • 8. Pipe SW. The hope and reality of long‐acting hemophilia products. Am J Hematol. 2012;87(Suppl 6):S33–S39.
  • 9. Oldenburg J, Mahlangu JN, Kim B, et al. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med. 2017;377(9):809–818.
  • 10. Leebeek FWG, Miesbach W. Gene therapy for hemophilia: a review on clinical benefit, limitations, and remaining issues. Blood. 2021;138(11):923–931.
  • 11. Castaman G, Di Minno G, De Cristofaro R, Peyvandi F. The arrival of gene therapy for patients with hemophilia A. Int J Mol Sci. 2022;23(18):10228.
  • 12. FDA . Roctavian—valoctocogene roxaparvovec. 2023. Available from: https://www.fda.gov/news‐events/press‐announcements/fda‐approves‐first‐gene‐therapy‐adults‐severe‐hemophilia
  • 13. EMA . Roctavian—valoctocogene roxaparvovec. 2022. Accessed July, 2023. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/roctavian‐0#assessment‐history‐section
  • 14. FDA . Hemgenix—etranacogene dezaparvovec—Approval Letter. 2022. Accessed July, 2023. Available from: https://www.fda.gov/media/163466/download
  • 15. EMA . Hemgenix—etranacogene dezaparvovec. 2023. Accessed July, 2023. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/hemgenix
  • 16. MHRA . Hemgenix—etranacogene dezaparvovec. 2023. Available from: https://products.mhra.gov.uk/product/?product=HEMGENIX
  • 17. Health Canada . Hemgenix—etranacogene dezaparvovec—Approval Letter. 2023. Available from: https://labeling.cslbehring.ca/PM/CA/hemgenix/EN/Hemgenix‐Product‐Monograph.pdf
  • 18. Srivastava A, Mallela KMG, Deorkar N, Brophy G. Manufacturing challenges and rational formulation development for AAV viral vectors. J Pharm Sci. 2021;110(7):2609–2624.
  • 19. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno‐associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31(4):317–334.
  • 20. Merten O‐W, Gény‐Fiamma C, Douar AM. Current issues in adeno‐associated viral vector production. Gene Ther. 2005;12(Suppl 1):S51–S61.
  • 21. Merten O‐W. AAV vector production: state of the art developments and remaining challenges. Cell Gene Ther Insights. 2016;2(5):521–551.
  • 22. Batty P, Lillicrap D. Hemophilia gene therapy: approaching the first licensed product. HemaSphere. 2021;5(3):e540.
  • 23. Ayuso E, Mingozzi F, Bosch F. Production, purification and characterization of adeno‐associated vectors. Curr Gene Ther. 2010;10(6):423–436.
  • 24. Adams B, Bak H, Tustian AD. Moving from the bench towards a large scale, industrial platform process for adeno‐associated viral vector purification. Biotechnol Bioeng. 2020;117(10):3199–3211.
  • 25. Ding W, Zhang L, Yan Z, Engelhardt JF. Intracellular trafficking of adeno‐associated viral vectors. Gene Ther. 2005;12(11):873–880.
  • 26. Simioni P, Tormene D, Tognin G, et al. X‐linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med. 2009;361(17):1671–1675.
  • 27. von Drygalski A, Gomez E, Giermasz A, et al. Stable and durable factor IX levels in patients with hemophilia B over 3 years after etranacogene dezaparvovec gene therapy. Blood Adv. 2023;10(7):5671–5679.
  • 28. Ozelo MC, Mahlangu J, Pasi KJ, et al. Valoctocogene roxaparvovec gene therapy for hemophilia A. N Engl J Med. 2022;386(11):1013–1025.
  • 29. Mahlangu J, Kaczmarek R, von Drygalski A, et al. Two‐year outcomes of valoctocogene roxaparvovec therapy for hemophilia A. N Engl J Med. 2023;388(8):694–705.
  • 30. Pipe SW, Leebeek FWG, Recht M, et al. Gene therapy with etranacogene dezaparvovec for hemophilia B. N Engl J Med. 2023;388(8):706–718.
  • 31. Coppens M, Pipe SW, Miesbach W, et al. Adults with haemophilia B receiving etranacogene dezaparvovec in the HOPE‐B phase 3 trial experience a stable increase in mean factor IX activity and durable haemostatic protection after 24 months’ follow‐up. 16th Annual Congress of European Association for Haemophilia and Allied Disorders 2023, 7–10 February 2023, Manchester (PO156).
  • 32. EMA . roctavian, INN‐valoctocogene roxaparvovec—Summary of Product Characteristics. Accessed July, 2023. Available at: https://www.ema.europa.eu/documents/product‐information/roctavian‐epar‐product‐information_en.pdf
  • 33. EMA . Hemgenix, INN‐etranacogene dezaparvovec—Summary of Product Characteristics. Accessed July, 2023. Available at: https://www.ema.europa.eu/documents/product‐information/hemgenix‐epar‐product‐information_en.pdf
  • 34. Muhuri M, Levy DI, Schulz M, McCarty D, Gao G. Durability of transgene expression after rAAV gene therapy. Mol Ther. 2022;30(4):1364–1380.
  • 35. Pasi KJ, Laffan M, Rangarajan S, et al. Persistence of haemostatic response following gene therapy with valoctocogene roxaparvovec in severe haemophilia A. Haemophilia. 2021;27(6):947–956.
  • 36. Shah J, Kim H, Sivamurthy K, Monahan PE, Fries M. Comprehensive analysis and prediction of long‐term durability of factor IX activity following etranacogene dezaparvovec gene therapy in the treatment of hemophilia B. Curr Med Res Opin. 2023;39(2):227–237.
  • 37. EPAR . Summary of risk management plan for Roctavian (BMN 270; valoctocogene roxaparvovec). Accessed July, 2023. Available at: https://www.ema.europa.eu/en/documents/rmp‐summary/roctavian‐epar‐risk‐management‐plan‐summary_en.pdf
  • 38. EPAR . EU risk management plan for Hemgenix (etranacogene dezaparvovec). Accessed July, 2023. Available at: https://www.ema.europa.eu/en/documents/rmp‐summary/hemgenix‐epar‐risk‐management‐plan_en.pdf
  • 39. Pierce GF, Coffin D, Members of the WFH Gene Therapy Round Table Program Committee and Organizing Committee . The 1st WFH gene therapy round table: understanding the landscape and challenges of gene therapy for haemophilia around the world. Haemophilia. 2019;25(2):189–194.
  • 40. Miesbach W, Chowdary P, Coppens M, et al. Delivery of AAV‐based gene therapy through haemophilia centres—A need for re‐evaluation of infrastructure and comprehensive care: a Joint publication of EAHAD and EHC. Haemophilia. 2021;27(6):967–973.
  • 41. Miesbach W, Baghaei F, Boban A, et al. Gene therapy of hemophilia: hub centres should be haemophilia centres: a joint publication of EAHAD and EHC. Haemophilia. 2022;28(3):e86–e88.
  • 42. Noone D, Astermark J, O'Mahony B, et al. The journey of gene therapy in haemophilia—putting the patient at the centre of the hub and spoke model. J Haem Pract. 2022;9(1):156–166.
  • 43. Le Quellec S, Breederveld D, Coppens M, Pinachyan K, The paradigm shift of gene therapy for haemophilia: impact on the patient journey. ESGCT 29th Annual Congress In collaboration with BSGCT Edinburgh, UK October 11–14, 2022 (P129).
Copyright © 2024 John Wiley & Sons, Ltd
View full text|Download PDF